
Building integration solutions with
Microsoft Azure Logic Apps Standard

Whitepaper

Microsoft Azure

by

Steef-Jan Wiggers
Microsoft Azure MVP
Technical Integration Architect, HSO

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.serverless360.com/?utm_campaign=whitepaper-serverless360-the-management-and-monitoring-hub-for-azure-service-bus

Whitepaper | 2Building integration solutions with Microsoft Azure Logic Apps Standard

Contents
1
About the Author The Journey to Logic Apps

Standard

The new version of Logic AppsRuntime change

Monitoring Logic Apps with

Application Insights

3 4

Running Logic Apps in a

Container

5 6

2

ConsiderationsNetworking and Security

7 8

9
Summary

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 3Building integration solutions with Microsoft Azure Logic Apps Standard

1
About the Author

Steef-Jan Wiggers works in the Netherlands as a

Technical Integration Architect at HSO. His current

technical expertise focuses on integration platform

implementations, Azure DevOps, and Cloud Solution

Architectures. Steef-Jan is a board member of the Dutch

Azure User Group (WAZUG NL), a regular speaker at

conferences and user groups, and he writes for InfoQ

and Serverless Notes. Furthermore, Microsoft has

recognized him as Microsoft Azure MVP for the past

eleven years.

Logic Apps are Microsoft’s Integration Platform as a Service offering in Azure, allowing you to

build cloud-native, hybrid, and now even on-premise workflows and integrations. With the

upcoming Logic Apps release, the service will have a new designer, hosting option in containers,

and the ability to run inside the App Service, bringing a completely new experience for its users.

This paper will dive into the latest version of Logic Apps, which was in preview for the last couple

of months and is now generally available.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://twitter.com/steefjan
https://www.hso.com/int/
https://www.wazug.nl/
https://www.infoq.com/profile/Steef%7EJan-Wiggers/
https://www.serverlessnotes.com/
https://mvp.microsoft.com/en-us/PublicProfile/4028898?fullName=steef-jan%20wiggers

Whitepaper | 4Building integration solutions with Microsoft Azure Logic Apps Standard

2
The Journey to Logic Apps Standard
Microsoft released BizTalk Server over 20 years ago, providing enterprises a message broker

product to facilitate system integration. The product evolved to its recent 11th release. During

that period, the company revealed Azure in 2008, which made general availability two years later.

It marked the starting point to developing similar capabilities of BizTalk Server in the Cloud. The

first is the service bus providing a similar pub/sub mechanism at the core of BizTalk. Next to the

messaging capabilities, Microsoft also made attempts to have the orchestration function and

myriad adapters available in a cloud offering.

The first attempt was known as EA CTP, which was succeeded by the second iteration of a service

called 'BizTalk Services.' After its availability, the company redesigned the architecture of the service

into Logic Apps – available as a preview in 2005 and made generally available in July 2006. Ever

since the adoption grew steadily and with the continuous investment and improvements by the

product team, the service became a leader in the Gartner Quadrant of integration Platform as a

Service (iPaaS) services next to Dell Boomi, MuleSoft, and other providers. A fourth iteration

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 5Building integration solutions with Microsoft Azure Logic Apps Standard

Running Logic Apps stateless and stateful

Ability to containerize Logic Apps

New observability option with Application Insights

A different pricing model for Logic Apps

With the new version of Logic Apps, developers can expect the following:

The options to host and leverage Logic Apps increase with the new version. You ultimately will have

the opportunity to run Logic Apps in a multi-tenant mode – that is, through consumption (an option

available today) or run in a dedicated isolated manner through an Integrated Service Environment

(ISE) or stand-alone (single-tenant), which is the version in preview. Single-tenant means, according

to the Microsoft documentation:

"The workflows in the same logic app and a single-tenant share the same processing

(compute), storage, network, and so on."

recently made generally available (GA) allows you to run Logic Apps on the App Service runtime – just

like Azure Functions. More hosting options will become available, including the containerization of

Logic Apps.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview-preview#how-does-azure-logic-apps-preview-differ

Whitepaper | 6Building integration solutions with Microsoft Azure Logic Apps Standard

3
Runtime change

A significant difference between the multi-tenant Logic App and isolation option ISE on the one hand

and the single-tenant Logic App version on the other is the runtime.

Logic Apps is a job scheduler with a JSON-based Domain Specific Language (DSL) describing a

dependency graph of actions – an inverse-directed graph. What Microsoft Pro-Integration Team

responsible for this service have done is that a user might feel like you're doing step A, step B, then

step C. However, what they have done is an inverse dependency on the previous step. Therefore, if

you look at the code view, you will see a RunAfter step. And it says RunAfter step A, right? Step B

runs after step A – thus then when you create your Logic app, you have the sequence of actions.

"actions": {
"HTTP": {

"type": "Http",
"inputs": {

"method": "GET",
"uri": "https://openexchangerates.org/api/latest.json?app_id=7f565dfaeec748de8ad9b1

c794bcd079"
},
"runAfter": {}

},
"Transform_JSON_To_JSON": {

"type": "Liquid",
"kind": "JsonToJson",
"inputs": {

"content": "@body('HTTP')",
"map": {

"name": "currency.liquid"
}

},
"runAfter": {

"HTTP": [
"Succeeded"

]
}

},

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 7Building integration solutions with Microsoft Azure Logic Apps Standard

"Response": {
"type": "Response",
"kind": "http",
"inputs": {

"statusCode": 200,
"body": "@outputs('Transform_JSON_To_JSON')?['body']"

},
"runAfter": {

"Transform_JSON_To_JSON": [
"Succeeded"

]
}

}
}

The JSON DSL allows you to have is – no dependencies and then have everything run in parallel.

Moreover, every action is essentially a task that runs in the background – allowing to be a very

highly parallelizable engine so that your workflows can run in parallel. To conclude, keep that in

mind as you write your logic apps; it's a dependency graph, not a step one and a step two

processes.

The DSL remains the same for any Logic App version; however, the runtimes executing are

different. The multi-tenant Logic Apps service consists of four general components:

A Logic Apps RP, a Resource Provider – essentially the Logic App frontend handling all the

requests. This component reads the workflow definition, breaks it down into component

tasks with dependencies, and then puts it into storage, which then the backend will process.

The Logic Apps Runtime is a distributed compute that will go ahead and coordinate

those tasks that have been broken down from your Logic App.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 8Building integration solutions with Microsoft Azure Logic Apps Standard

Then we have a Connection Manager that goes forward and manages the connection

configuration, token refreshment, and credentials that you have in your API connections.

And then finally, the Connector Runtime, which hosts the API abstractions to all the APIs

that you have and hosts– sometimes are codeful, sometimes they're codeless, and then

manages that abstraction for you.

When you want to run Logic Apps in an isolated manner, you can choose to provision an ISE. In that

case, you will have a dedicated Logic Apps- and Connector runtime. Furthermore, you can benefit

from enterprise features such as VNET- and Express Route support.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 9Building integration solutions with Microsoft Azure Logic Apps Standard

There is a different runtime with the single-tenant version of Logic Apps, i.e., Logic Apps run in a

Function App runtime. The Runtime deep dive blog post by Rohitha Hewawasam explains it as

follows:

The Logic Apps runtime implements each action type in a workflow definition as a job run by the

underlying Logic Apps job orchestration engine. For example, the HTTP action type is implemented

as a job that evaluates the inputs to the HTTP action, sends the outbound request, handles the

returned response, and records the result from the action.

Every workflow definition contains a sequence of actions mapped to a directed acyclic graph (DAG)

of jobs with various complexity. When a workflow is triggered, the Logic Apps runtime looks up the

workflow definition and generates the related jobs organized as a DAG, which Logic Apps calls a

job-sequencer. Each workflow definition is compiled into a job sequencer that orchestrates the

running of jobs for that workflow definition. The job orchestration engine is a horizontally scalable

distributed service that can run DAGs with large numbers of jobs.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://techcommunity.microsoft.com/t5/integrations-on-azure/azure-logic-apps-running-anywhere-runtime-deep-dive/ba-p/1835564

Whitepaper | 10Building integration solutions with Microsoft Azure Logic Apps Standard

The runtime for the single-tenant Logic Apps allows running workflows stateful and stateless.

Hewawasam explains:

For stateful workflows, the orchestration engine schedules the jobs in the sequencers

by using Azure Storage queue messages. Behind the scenes, multiple dispatcher

worker instances (job dispatchers), which can run on multiple compute nodes, monitor

the Logic Apps job queues. By default, the orchestration engine is set up with a single

message queue and a single partition on the configured storage account. However, the

orchestration engine can also be configured with multiple job queues in multiple

storage partitions. For stateless workflows, the orchestration engine keeps its states

entirely in memory.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 11Building integration solutions with Microsoft Azure Logic Apps Standard

4
The new version of Logic Apps

With the new version or fourth iteration of its integration Platform as a Service (iPaaS), Microsoft

brings new features for its users, such as running Logic App on the app service runtime and

including a new designer. Next to the new hosting option, it also offers:

Better developer experience

Streamlined DevOps

Improved Performance

Enhanced Security

Optimized Monitoring

Extensibility

We will start with the developer experience first before continuing with DevOps and non-functional

aspects of performance, security, and monitoring aspects. And lastly, we will discuss some

considerations with the new version of Logic Apps.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 12Building integration solutions with Microsoft Azure Logic Apps Standard

4.1.1
Create a Logic App Instance

When you go to the Azure Portal, you can access the Logic Apps in preview through the Marketplace.

By choosing to create a Logic App in preview, you will see the Basics tab first. Within this tab, you can

select the subscription and resource group for your Logic App, and next to name and region,

whether you like to choose to publish the Logic App as a workflow or docker container. The

publishing part is new.

The following tab details hosting, and here you configure (select) your storage account and app

service plan. The hosting section is similar to the details you set when creating a Function App. Since

the preview (new version) of Logic Apps is the stand-alone (single-tenant) option (now GA). You can

select either the premium or App Service plan.

Premium App Service plan automatically scales based on demand using pre-warmed workers,

which run applications with no delay after being idle, runs on more powerful instances, and

connects to virtual networks according to the Microsoft hosting options documentation. The App

Service Plan can be a Service Plan you created yourself earlier and selected in the tab or a new one.

4.1
Better Developer Experience

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Whitepaper | 13Building integration solutions with Microsoft Azure Logic Apps Standard

The following tab deals with monitoring, and similar to a Function App, you can choose to

enable Application Insights and select an existing instance or create a new one. And finally, you

can apply tags on the Logic App and review the configuration before create.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 14Building integration solutions with Microsoft Azure Logic Apps Standard

When you click to create the Logic App, its dependencies listed in the screenshot above will be

provisioned. The Storage account supports the logging and monitoring capabilities of the App

Service Runtime, while the plan deals with hosting.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.serverless360.com/?utm_campaign=whitepaper-serverless360-the-management-and-monitoring-hub-for-azure-service-bus

Whitepaper | 15Building integration solutions with Microsoft Azure Logic Apps Standard

4.1.2
Create a workflow

By selecting your Logic App after the provisioning is complete, you can see in the overview and all

the available tabs (left-hand side) that your Logic App instance is pretty familiar with a Function

App. You will see settings, app service plans, deployment tools, and other features you would

also find in the Function App. What you will notice also is workflows, and by selecting it, you can

add one.

Clicking adds (+), you will see a new pane appear on the right-hand side with the following details:

Workflow name

State type: Stateful or stateless.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 16Building integration solutions with Microsoft Azure Logic Apps Standard

When you provide a name and choose, for instance, stateful, a new workflow template will be

created. I am explicitly stating the template because you will see a developer tab when you select

the workflow, where you can choose designer, providing you a canvas to drop the trigger and

actions. Furthermore, the code view is the same as the code behind in the current version of Logic

Apps.

4.1.3
Build a workflow

You can create a workflow yourself when reading the earlier text of this paper to provision a Logic

App instance. By adding a workflow, providing a name, and choosing the state type, you will end up

with an empty template as described in the previous paragraph.

For example, as a trigger, you can double click the RSS connector (you can find it under Azure – not

built-in!), and it will appear on top (over the choose an operation). You will see on the right-hand

side a pane with the specifics for the RSS Feed connector. You can rename it and specify the RSS

Feed URL – you can select https://feeds.a.dj.com/rss/RSSMarketsMain.xml - or another RSS Feed

URL you prefer. Subsequently, you can choose whether you like when there's an update or

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://feeds.a.dj.com/rss/RSSMarketsMain.xml

Whitepaper | 17Building integration solutions with Microsoft Azure Logic Apps Standard

publication date (options for the feed) and the interval.

Note that you can also look at the settings of the trigger action, code, and about. Next, you can click

the next step to add an action. For instance, under Azure, you can look for the Outlook.com

connector and choose the send mail (V2) operation. A new pane will appear, asking you to login into

your Outlook.com account. Once you usefully logged in, a connection is created (similar to the

current Logic App version). You can again, like with the trigger, specify specific settings – for the

email you can set to, title, content, and so on:

Finally, you can save the workflow, and based upon the configuration of the feed, you will see

invocations of the workflow in the trigger history. Furthermore, based upon the email address set to

receive the feeds, it will show one or more emails in the belonging account. Alternatively, you can

choose a compose action below the change feed if you do not want to send emails.

The steps above provide a way to create a Logic App workflow in Azure and get familiar with the new

designer and developer tools' behaviour. Note that authoring a workflow can also be done using IDE

Visual Code. In the following paragraphs, we will also touch upon that.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 18Building integration solutions with Microsoft Azure Logic Apps Standard

4.1.4
Running Logic Apps Stateless and Stateful

As mentioned earlier, workflows can be stateless or stateful when you want to create one. According

to the Microsoft documentation:

Stateless means when you don't need to save, review, or reference data

from previous events in external storage for later review. These workflows save

the inputs and outputs for each action and their states only in memory, rather

than transferring it to external storage.

For that reason nothing has to be stored in the storage account – which is one of the dependencies

of the Logic App, as you have seen in the previous paragraph. The runs are significantly shorter than

stateful workflows and typically run no longer than five minutes (the same threshold as for Functions

running in a consumption plan), will have faster performance (of course, since it runs in memory and

no state is being written), and have reduced running costs. Another aspect of stateless also

mentioned in the documentation is that when a run is interrupted, the caller of the workflow will

need to resubmit that run manually – which means stateless runs are synchronous.

In the previous section, we discussed building a workflow leveraging an RSS feed that can run

stateless or stateful. Choosing between these types depends on your use case and requirements.

The trade-off depends on whether the Logic App (process) is something that does not save or

reference information about previous operations (retrieve or persist state) or does need some

specific information (state retrieved from, for instance, a database).

Until now, we showed and discussed using the Azure Portal for building a Logic App. You can also

follow the Microsoft documentation (how-to guide) for building Logic apps (Standard) in the Portal.

However, we recommend creating a Logic App (Standard) using VS Code, which we will discuss in the

upcoming paragraph.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview-preview#how-does-azure-logic-apps-preview-differ
https://docs.microsoft.com/en-us/azure/logic-apps/create-single-tenant-workflows-azure-portal

Whitepaper | 19Building integration solutions with Microsoft Azure Logic Apps Standard

4.1.5
Building a Workflow using Visual Code

The new Logic App brings support for VS Code, enabling you to author a workflow with an IDE like VS

Code. There are some perquisites to do so. According to the Microsoft document 'Create stateful and

stateless workflows in Visual Studio Code with the Azure Logic Apps (Preview) extension' you need:

The Azure Account extension - providing a single common Azure sign-in and subscription

filtering experience for all other Azure extensions in Visual Studio Code.

An Azure Storage Emulator version 5.10 (make sure to start the emulator before you begin)

VS Code version 1.30.1 or higher

C# for Visual Studio Code extension

Azure Functions Core Tools 3.0.3245 or later, and

Azure Logic Apps (Preview) extension for Visual Studio Code - am extension providing the

capability for you to create logic apps - where you can build stateful and stateless

workflows that locally run in Visual Studio Code and then deploy those logic apps directly

to Azure or Docker containers.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/create-stateful-stateless-workflows-visual-studio-code
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://docs.microsoft.com/en-us/azure/logic-apps/create-stateful-stateless-workflows-visual-studio-code
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://github.com/Azure/azure-functions-core-tools/releases/tag/3.0.3245
https://docs.microsoft.com/en-us/azure/logic-apps/create-stateful-stateless-workflows-visual-studio-code

Whitepaper | 20Building integration solutions with Microsoft Azure Logic Apps Standard

With all the prerequisites in place, you can start creating your workflow. The previously mentioned

Microsoft document details how to make one step-by-step. Note that by forgetting one of the

prerequisites, you will encounter warnings in VS Code.

When choosing stateless, the Explorer pane will show a generated workflow.json with kind: stateless.

Furthermore, when opening the designer, it might take a few seconds. Otherwise, there's an issue;

for instance, not all prerequisites are installed correctly.

From within VS Code, you can create a project and add one or more workflows – either stateful or

stateless. Note that when choosing stateless, you have less trigger action available than when

choosing stateful.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 21Building integration solutions with Microsoft Azure Logic Apps Standard

Stateless Stateful

When Events are available in Event Hubs When Events are available in Event Hubs

NA HTTP

NA HTTP Webhook

When an HTTP request is received When an HTTP request is received

Recurrence (schedule)

When messages are available in Service Bus

Queue

When messages are available in Service Bus
Queue

When messages are available in Service Bus

Topic

When messages are available in Service Bus
Topic

Furthermore, when running the Logic App locally, you cannot examine the run details of a stateless

workflow. However, with a stateful workflow, you can investigate the run in Visual Code (when the

workflow is running!).

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 22Building integration solutions with Microsoft Azure Logic Apps Standard

Note that you need to attach your runtime to either a storage account or a local emulator or use

Azurite.

An extensive walkthrough is available on the Microsoft documentation: Create an integration workflow

using single-tenant Azure Logic Apps and Visual Studio Code. Furthermore, we also recommend from a

developer perspective to look at:

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/logic-apps/create-single-tenant-workflows-visual-studio-code

Whitepaper | 23Building integration solutions with Microsoft Azure Logic Apps Standard

After successfully building and debugging your workflow(s) – the next step is to deploy them to

Azure. There is a direct option to deploy them to Azure using VS Code described in the upcoming

paragraph.

Edit host and app settings for logic apps in single-tenant Azure Logic Apps, and

Create parameters for values that change in workflows across environments for single-tenant

Azure Logic Apps

4.2
Deployment Options

4.2.1
Deploy Workflows with VS Code to Azure

You can directly publish your project to Azure, which deploys your Logic App using the new Logic App

(Preview) resource type. You go to Visual Studio Code Activity Bar, select the Azure icon. Next, you on

the Azure: Logic Apps (Preview) pane toolbar, select Deploy to Logic App. Subsequently, you will go

through a series of steps described in the Microsoft documentation section 'Publish to a new Logic

App (Preview) resource.' By following these steps, your Logic Apps and flows will be published in

Azure.

4.2.2
Deployment options for Workflows in Logic Apps Standard

Besides directly publishing Logic Apps to Azure, you can also push it to a repo in DevOps first. Next,

you can decide whether you want to push the workflows using Azure Pipelines or connecting the

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/edit-app-settings-host-settings?tabs=visual-studio-code
https://docs.microsoft.com/en-us/azure/logic-apps/parameterize-workflow-app
https://docs.microsoft.com/en-us/azure/logic-apps/create-single-tenant-workflows-azure-portal

Whitepaper | 24Building integration solutions with Microsoft Azure Logic Apps Standard

In a DevOps project, navigate to Repos, create a Repo, and clone it in VS Code. Note that you need to

have the git extension installed for your VS Code. Next, you can start adding a new Logic App preview

project. Build your Logic App locally, run and debug it. If you are satisfied, you can commit and push

the project to the repo.

repo via the deployment center to the Logic App environment in Azure. We will briefly discuss both

approaches.

After having your Logic App in a DevOps repo, the next step is deploying it to its host, i.e., Logic App

Standard. You can use, as mentioned earlier, Deployment Center or Azure Pipelines, or you can even

use Bicep.

4.2.3
Logic App Deployment Center Approach

Deployment center is the centralized way to get all of your code into an App Service or, in the case

of Logic App Standard - workflows. Once you pushed your workflow to the repo in Azure DevOps,

you can navigate to your Logic App and choose the Deployment Center in the Deployment part on

the left-hand pane. Now you can choose to connect to a repo – with Azure DevOps as one of the

options.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/app-service/deploy-continuous-deployment

Whitepaper | 25Building integration solutions with Microsoft Azure Logic Apps Standard

Next, save and then choose sync.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 26Building integration solutions with Microsoft Azure Logic Apps Standard

You will see in the Logic App one or more workflows appear, depending on the number you build

locally in your project. We created one workflow in our project, pushed in an Azure Repo, and synced

it with our Logic App.

With the Deployment Center, you have multiple options of choosing a repo (location) and have your

code (workflow) deployed into your Logic App (Standard – the Logic App is more a container similar to

a Function App or App Service). With the Sync feature, you can pull changes from a repo/branch into

your Logic App. You need to set up the development center for multiple environments – yet you can,

based upon your branching strategy, pull from the correct branch intended for the environment.

That's the big plus and doesn't require a pipeline. The governance, however, for deploying to various

environments is delegated to your repo, i.e., branching strategy. The other option you have for

deploying to multiple environments is using Azure Pipelines, which we will discuss that approach

briefly in the next paragraph.

4.2.4
Azure DevOps or GitHub Actions Approach

An alternative to the deployment center approach is building an Azure Pipeline to deploy your

workflows to the various environments or use GitHub Actions. During the preview, there wasn't much

guidance for this. However, with the GA release, there are samples available. Through GitHub, you can

find two options:

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 27Building integration solutions with Microsoft Azure Logic Apps Standard

GitHub Actions: Logic Apps (Single-tenant) DevOps - GitHub Actions

Azure Pipelines: Logic Apps (Single-tenant) - Azure DevOps

With the GitHub sample, we leveraged the code to deploy the necessary infrastructure for the

single-tenant Logic App.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://github.com/Azure/logicapps/tree/master/github-sample
https://github.com/Azure/logicapps/tree/master/azure-devops-sample

Whitepaper | 28Building integration solutions with Microsoft Azure Logic Apps Standard

You can modify the sample(s) to your requirements.

When running the pipeline, the resources necessary for the Logic App Standard are deployed.

Lastly, the Microsoft documentation Set up DevOps deployment for single-tenant Azure Logic Apps

provided details to set up DevOps.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/set-up-devops-deployment-single-tenant-azure-logic-apps?tabs=github

Whitepaper | 29Building integration solutions with Microsoft Azure Logic Apps Standard

4.3
Mapping in Logic Apps

We haven't touched yet the ability to leverage maps and schema's in the new Logic App version. This

version doesn't have a dependency on the integration account. You can create maps and schemas

using tools you are familiar with – and upload them using the portal.

4.2.5
Bicep Language

Alternatively, you can try using Bicep, a Domain Specific Language (DSL), for deploying Azure resources

declaratively. It is a transparent abstraction over ARM and ARM templates, which means anything can

be done in an ARM Template you can do in Bicep (outside of known temporary limitations). Although

still in preview, it is worth looking into Bicep to deploy Azure resources, including Logic App Standard

and its dependencies. The Bicep Language is available as a VS-Code plug-in, and tutorials are available

on GitHub.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://github.com/Azure/bicep
https://github.com/Azure/bicep#known-limitations
https://github.com/Azure/bicep/tree/main/docs/tutorial

Whitepaper | 30Building integration solutions with Microsoft Azure Logic Apps Standard

Once you have uploaded your schemas or maps, you can use them in your workflows:

Another approach is to use the schema and maps in your project in VS Code. You will need to add

the respective Maps and Schemas folders to your Visual Studio Code project Artifacts folder.

In the local solution we build fetching USD exchanges rates when invoking a workflow, we applied

the following liquid map to receive a subset in our desired json format:

{

"Timestamp" : "{{ content.timestamp }}",

"Base" : "{{ content.base }}",

"Date" : "{{ "now" | Date: "MM/dd/yyyy" }}",

"Rates" : [

{

"EUR" : "{{ content.rates.EUR }}",

"GBP" : {{ content.rates.GBP }}

}

]

}

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 31Building integration solutions with Microsoft Azure Logic Apps Standard

The map is placed in the maps folder. Next, with the designer, we can pick this map.

When testing the workflow locally, we see the response with the desired format:

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 32Building integration solutions with Microsoft Azure Logic Apps Standard

With the ability to edit schemas and maps locally, you can also test them locally, enhancing

productivity.

5
Running Logic Apps in a Container

With Logic App (Preview) running in a Function App Service Runtime also opens up the possibility to

host a Logic App in a container. The current Func App Runtime brings support for Docker. To host

your Logic App in a container, you will need the latest Azure Functions Core tools, Azure CLI, and

Docker on your developer machine.

In VS Code, create a Dockerfile in the project of the Logic App. Note that the file has no file

extension and is just called Dockerfile. It should have the following contents:

FROM mcr.microsoft.com/azure-functions/dotnet:3.0.14492-appservice

ENV AzureWebJobsStorage=<Your Azure Storage connection string>

ENV AZURE_FUNCTIONS_ENVIRONMENT Development

ENV AzureWebJobsScriptRoot=/home/site/wwwroot

ENV AzureFunctionsJobHost__Logging__Console__IsEnabled=true

ENV FUNCTIONS_V2_COMPATIBILITY_MODE=true

COPY ./bin/release/netcoreapp3.1/publish/ /home/site/wwwroot

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.docker.com/docker-for-windows/install/

Whitepaper | 33Building integration solutions with Microsoft Azure Logic Apps Standard

Next, you fill in your Azure Storage connection string for the AzureWebJobsStorage environment

variable so that the Logic App in the container can use it. Once that is done, you can open the

Terminal in VS Code and, according to the documentation, build your Docker container image by

using your Docker file and running this command:

docker build --tag local/workflowcontainer .

However, in the docker file, the last line has the command

COPY ./bin/release/netcoreapp3.1/publish/

This folder doesn't exist yet; hence you need to build and release your project using:

dotnet build -c release

dotnet publish -c release

Yet, the Logic App project doesn't contain a .proj or .sln file, at least not if you have created one. You

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 34Building integration solutions with Microsoft Azure Logic Apps Standard

can make the /bin/release/netcoreapp3.1/publish folder yourself and execute the Docker build

command again. The key here is to convert the project to a Nu-Get based Logic App project:

With the Logic App we build, we executed:

docker build --tag local/ingestusdexchangerates .

And led to building a container:

Since the Logic App doesn't contain an endpoint as it is a Logic App with a recurrence.

The commands then will work!

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 35Building integration solutions with Microsoft Azure Logic Apps Standard

When exposing an endpoint with your workflow and package it in a container, see the following tip:

https://microsoft.GitHub.io/AzureTipsAndTricks/blog/tip311.html

And a tutorial on the Microsoft Docs: Create stateful and stateless workflows in Visual

Studio Code with the Azure Logic Apps (Preview) extension

6
Monitoring Logic Apps with Application Insights

Up to now, we have discussed developing and deploying Logic App workflows. Next, we will discuss

monitoring. With the support for the Function runtime, you can benefit from the built-in integration

with Application Insights. You can navigate to Logic App (Preview), and under Settings, select

Application Insights in the Azure Portal.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://microsoft.github.io/AzureTipsAndTricks/blog/tip311.html
https://docs.microsoft.com/en-us/azure/logic-apps/create-single-tenant-workflows-visual-studio-code
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

Whitepaper | 36Building integration solutions with Microsoft Azure Logic Apps Standard

In our case with the Application Insights was already enabled, and we could look at the data. Note

that you can enable/disable the application monitoring, change the resource, i.e., select a different

instance of Application Insights. Below you see data from our Logic App (containing one workflow):

According to a tech community blog post on Application Insights for the preview Logic App, each

time a workflow-related event happens, for example, when a workflow is triggered, or an action

runs, the runtime emits various traces. These traces cover the lifetime of the workflow run and

include, but aren't limited to, the following types:

Service activity, such as start, stop, and errors.

Jobs and dispatcher activity.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://techcommunity.microsoft.com/t5/integrations-on-azure/azure-logic-apps-running-anywhere-monitor-with-application/ba-p/1877849

Whitepaper | 37Building integration solutions with Microsoft Azure Logic Apps Standard

Workflow activity, such as trigger, action, and run.

Storage request activity, such as success or failure.

HTTP request activity, such as inbound, outbound, success, and failure.

Ad-hoc development traces, such as debug messages.

The post also details the severity level applicable to the trace types and how to set the level in the

host.json file.

{

"version": "2.0",

"logging": {

"logLevel": {

"Host.Triggers.Workflows": "Trace"

}

}

}

Next to instrumenting the Logic App (and its workflows), you want to examine logs and telemetry

leveraging the Application Insights attached to it. You can select Logs under Monitoring in your

Application Insights. Run available queries or create your own. You can, for instance, select a

general query to view the performance.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 38Building integration solutions with Microsoft Azure Logic Apps Standard

And look at Chart if you like:

You can also dive into the traces depending on how the level is set in the host.json file (as

explained in the tech community blog post).

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://techcommunity.microsoft.com/t5/integrations-on-azure/azure-logic-apps-running-anywhere-monitor-with-application/ba-p/1877849

Whitepaper | 39Building integration solutions with Microsoft Azure Logic Apps Standard

As explained in a subsequent blog post, your Logic App is integrated with Application Insights giving

you access to all telemetry data in the form of tables in a database. Workflow execution-specific logs

are available under the traces table.

The screenshot shows that you can see the triggered workflows and have the ability to drill down in

each of the runs. And this is just one of many other things that Application Insights has to offer. For

instance, with the application map feature, you can see the call duration, the number of calls, and

dependencies with other components (in case there are any).

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://techcommunity.microsoft.com/t5/integrations-on-azure/azure-logic-apps-running-anywhere-monitor-with-application/ba-p/2003332

Whitepaper | 40Building integration solutions with Microsoft Azure Logic Apps Standard

The integration with Application Insights with Logic Apps is a significant improvement and

enhances the observability of your integration solutions. To learn more about Application Insights,

see the Microsoft DevOps Labs and Azure Monitoring Landing page.

6.1
Other Monitoring capabilities

Under the monitoring part on the left-hand side of the portal showing your Logic App, you can see

various options:

You are familiar with some of them as they also appear when creating Logic Apps (consumption-

based – multi-tenant). New or now available are Log Stream and Process Explorer. Let's explore

those. Note that App Service logs are greyed out and not available.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://azuredevopslabs.com/labs/vsts/monitor/
https://docs.microsoft.com/en-us/azure/azure-monitor/azure-monitor-app-hub

Whitepaper | 41Building integration solutions with Microsoft Azure Logic Apps Standard

6.2
Log Stream

To access the Log Stream, you can navigate to Logic App (Standard), and under Monitoring, select

it in the Azure Portal. The feature allows you to connect to the App Insights log stream or

filesystem-based log stream, set the log level (verbose, informational, error, and warning), choose

to stop/start, and switch to Live Metrics.

Note that you will receive a warning that it can impact performance when you toggle to the

filesystem-based log stream.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 42Building integration solutions with Microsoft Azure Logic Apps Standard

With Log Stream, you can look at the actual log stream of your Logic App runtime – useful when to

troubleshoot issues. Also, you open Live Metrics simultaneously to get further insights.

6.3
Process Explorer

In the previous paragraph, we

discussed the Log Stream feature.

The other feature is process

explorer, which provides

information about the running

processes (w3wp) in the runtime.

You can examine each process by

clicking on it. You will then get

access to a new page providing you

with an overview of memory

consumption, threads, and working

sets.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 43Building integration solutions with Microsoft Azure Logic Apps Standard

7
Networking and Security

The Logic App Standard runs on top of the Function App runtime – basically on top of the App Service

Infrastructure and thus inherits the platform capabilities it offers. The tech community blog post

Networking Possibilities with Logic App Preview provides examples of securing inbound traffic to HTTP-

triggered Logic Apps with Private Endpoints and VNET integration.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://techcommunity.microsoft.com/t5/integrations-on-azure/logic-apps-anywhere-networking-possibilities-with-logic-app/ba-p/2105047

Whitepaper | 44Building integration solutions with Microsoft Azure Logic Apps Standard

Furthermore, it references a GitHub page containing arm templates and application code for setting

two workflows in two Logic App Preview resources in a virtual network with the storage accounts locked

into the VNET. Note that for VNET Integration, the Logic App requires a standard or premium plan.

Under Settings in the Portal, you can access the Networking features for Logic App (Standard)

As shown above, you can configure VNET integration, hybrid connections, and so on from this point on.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://github.com/rohithah/logic-apps-samples

Whitepaper | 45Building integration solutions with Microsoft Azure Logic Apps Standard

Other security aspects of Logic Apps Standard are that you can access Security in the Portal on the

left hand near Overview and Access Control. This feature provides recommendations and alerts.

The Access Control provides control over who can access the resource and Identity under

Settings, where you can configure managed identities (system- or user-defined).

The single-tenant Logic App (Standard) has many more capabilities for networking and security –

which shouldn't surprise you when the runtime inherits all the App Service infrastructure.

Moreover, consider this aspect when looking at the three options available for Logic Apps (more

considerations are discussed in the following paragraphs). Examine the Microsoft documentation

for the networking and security aspects (look at App Service specifically) – as it is pretty extensive

and warrants a paper on its own.

8
Considerations

With a new version of Logic Apps, you will have three available options to host your workflows in

Azure. Each with its characteristics and also limitations. This paragraph will discuss a few aspects

you need to consider with these options: pricing, scenarios, training, deployment strategy, and

those limitations.

8.1
Pricing

First, let us look at pricing, which differs for each option. The multi-tenant pay-as-you-go version

pricing is based upon executions (consumption). You pay for each trigger action, action, and usage of

connectors. Below is an example of Pricing in U.S. Dollars as per the pricing page:

Lastly, you can also read the Microsoft document Secure traffic between virtual networks and

single-tenant workflows in Azure Logic Apps using private endpoints.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://azure.microsoft.com/en-us/pricing/details/logic-apps/
https://docs.microsoft.com/en-us/azure/logic-apps/secure-single-tenant-workflow-virtual-network-private-endpoint

Whitepaper | 46Building integration solutions with Microsoft Azure Logic Apps Standard

Per execution

Actions $0.000025

Standard Connectors $0.000125

Enterprise Connectors $0.001

Furthermore, when you require mapping support in your Logic App and want to leverage the

integration account, you will incur additional costs. Pricing of the integration account is available on

the same pricing page. You choose between basic ($0.42/hour) and standard ($1.37/hour) plan.

Second, you have the option of choosing an integrated service environment (ISE) to support a more

isolated scenario (VNET support, scaling, and predictable costs). With ISE, the pricing is different – it's

hourly costs and not consumption-based. Below an example of Pricing in U.S. Dollars as per the

pricing page:

Developer Premium

Base Unit $1.03 Hour $6.64 Hour

Scale Unit N.A. $3.32 Hour

And lastly, we have the new Logic App (Standard) running in Function App runtime. The pricing details

are available through the Pricing and billing models for the Azure Logic Apps GitHub page:

Furthermore, when leveraging Application Insights (part of Azure Monitor), you also will incur charges.

To conclude for pricing of the new Logic App, you will have to examine the costs for:

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://azure.microsoft.com/en-us/pricing/details/logic-apps/
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/logic-apps/logic-apps-pricing.md

Whitepaper | 47Building integration solutions with Microsoft Azure Logic Apps Standard

Azure Storage Pricing details;

And monitoring pricing.

We suggest you also read the Pricing and billing models for Azure Logic Apps Microsoft document

for a good understanding of the pricing and the Estimate storage costs for workflows in the single-

tenant Azure Logic Apps document.

Pricing is a critical consideration for any Azure service you want to leverage for your solution. This

consideration is also applicable when using Logic Apps for your integration needs. Next to pricing

(which is tied to hosting), relevant scenarios for using Logic App are essential.

8.2
Scenarios

Logic App is an Azure service, which you leverage in various cloud solution architectures. An obvious

one is when integrating systems in the Cloud and/or on-premise (hybrid). Yet, you can use Logic Apps

in other scenarios too. The Azure Architecture center provides many strategies where you can

leverage a Logic App. For instance, the Image Classification Example. While the scenario discusses the

use of Functions, as shown below, it does mention using Logic Apps when you don't need to react in

real-time on added files to a blob. A logic app that can check if a file was added might be started by

the recurrence trigger or sliding windows trigger.

App Service Pricing details;

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://azure.microsoft.com/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/monitor/
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-pricing
https://docs.microsoft.com/en-us/azure/logic-apps/estimate-storage-costs
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/intelligent-apps-image-processing
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/

Whitepaper | 48Building integration solutions with Microsoft Azure Logic Apps Standard

Logic App has a recurrence trigger action that has several configurable options. Although the

function does provide a trigger binding, you could also choose a function – yet you could select a

Logic App to support another requirement.

Another example of the Azure Architecture Center is a Remote Patient Monitoring Solution (see

diagram below).

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/concepts-schedule-automated-recurring-tasks-workflows
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/remote-patient-monitoring

Whitepaper | 49Building integration solutions with Microsoft Azure Logic Apps Standard

The workflow according to the scenario is as follows:

Securely ingest medical sensor and device data using Azure IoT Hub.

Securely store sensor and device data in Cosmos DB.

Analyze sensor and device data using a pre-trained Cognitive Services API or a custom-

developed Machine Learning model.

Store Artificial Intelligence (AI) and Machine Learning result in Cosmos DB.

Interact AI and Machine Learning results using Power BI while preserving Azure role-based

access control (Azure RBAC).

Integrate data insights with backend systems and processes using Logic Apps.

Logic Apps are a part of the solution for integration purposes. With the scenario in mind, you can

think of the workload the Logic Apps will have to deal with – which hosting option would be best in

this case, i.e., multi-, single-tenant version of Logic Apps or an integrated service environment. Since

we are dealing with patient data, compliance and security are critical – enterprise capabilities such

as VNET integration will become apparent. Therefore, the multi-tenant Logic App is the least

interesting option – leaving the single-tenant or ISE option open.

When looking at your requirements and starting a design for your solution that will include Logic

Apps, it is essential to look at:

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 50Building integration solutions with Microsoft Azure Logic Apps Standard

Workload (hosting)

Patterns (look at similar solutions in the architecture center)

Non-functionals (scale, networking, security)

8.3
Training

In the previous two sections, we discussed pricing and scenarios. You can now understand that with

various options of Logic Apps, you will need a good grasp of the technology and characteristics.

Fortunately, the Azure Architecture Center is a good source of information and detail. Moreover, this

also accounts for the Microsoft documentation. And there is more with Microsoft Learn offering a

learning experience.

The following lists a set of resources that can support you in getting yourself trained and well-versed

in Logic Apps:

Microsoft Learn – Intro into Logic Apps

Microsoft Learn – Route and Process data automatically with Logic Apps

On-demand – Pluralsight

Documentation Landing Page

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/learn/modules/intro-to-logic-apps/
https://docs.microsoft.com/en-us/learn/modules/route-and-process-data-logic-apps/
https://www.pluralsight.com/courses/azure-logic-apps-getting-started
https://docs.microsoft.com/en-us/azure/logic-apps/

Whitepaper | 51Building integration solutions with Microsoft Azure Logic Apps Standard

You can think of leveraging the Bicep language to deploy your infrastructure (Logic App and its

dependencies – Storage Account, Application Insights, and App Service Plan) and separately the

workflows. And although Bicep is still preview and early days – the single-tenant Logic Apps is just

out; thus, it's worth the effort. Lastly, it would be best to think about workloads for your

workflows hosted in the Logic App. Also, think about if the workflows combined have a purpose

for a single business process (integration).

With deployment, think about:

Serverless Tips – Logic Apps

Azure Architecture Center – Logic Apps

GitHub – Enterprise Integration

8.4
Deployment Strategies

An essential aspect of building workflows using the new Logic App (Standard) is deployment. First,

you need to think about branching strategies, pipelines (deployment of the infrastructure and

workflows), and sizing of the environment (App Service Plan). Next, you have several options like

deployment center, GitHub Actions, Azure DevOps Pipelines, and Bicep.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.serverlessnotes.com/docs/logic-apps-configure-retry-settings
https://docs.microsoft.com/en-us/azure/architecture/browse/?terms=Logic%20Apps
https://github.com/MicrosoftDocs/architecture-center/tree/master/docs/reference-architectures/enterprise-integration

Whitepaper | 52Building integration solutions with Microsoft Azure Logic Apps Standard

Location of your Logic App – it can be containerized and thus deployed on the Edge or

other platforms – see also Tom Kerkhove's blog about running Logic Apps everywhere!

Sizing Logic App

Single responsibility, i.e., have one or more workflows supporting a single process or

integration

The Logic App and its workflows should be in a single project in Visual Studio

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.codit.eu/blog/why-running-azure-logic-apps-anywhere-is-a-game-changer/

Whitepaper | 53Building integration solutions with Microsoft Azure Logic Apps Standard

8.4.1
Limitations

Lastly, the limitation of each Logic App option is crucial to understand when you implement them

into your solution. Fortunately, the Microsoft documentation is up to date with the limitations of

each option. The Limits and configuration information for Azure Logic Apps documentation page

lists them all. Furthermore, some known issues with the single-tenant Logic App version (preview)

are available on GitHub.

9
Summary

In this eBook, we discussed the new Logic App version – the single-tenant Standard (previously in

preview). This Logic App version allows you to build so-called single-tenant workflows hosted in an

App Service Plan or container. We discussed the stateless and stateful workflows, the mapping

capabilities, networking, security, deployment, monitoring, and considerations. Most of the topics

in the eBook are summarized in the diagram below – an example of building workflow(s) locally

and push them to several environments.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-limits-and-config
https://github.com/Azure/logicapps/blob/master/articles/logic-apps-public-preview-known-issues.md

Whitepaper | 54Building integration solutions with Microsoft Azure Logic Apps Standard

Dev Subcription

Single-Tenant
Logic App

Test Subscription

Acceptance Subcription

Production Subscription

IaC/CI/CD

Pipeline

I hope the eBook will provide you with a starting point to learn this new technology and apply it to

your solutions.

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

Whitepaper | 55Building integration solutions with Microsoft Azure Logic Apps Standard

About Serverless360
Serverless360 is a one platform tool to operate, manage and monitor Azure Serverless

components. It provides efficient tooling that is not and likely to be not available in Azure

Portal. Manageability is one of the key challenges with Serverless implementations. Hundreds

of small, discrete Serverless functionalities are catered in various places – managing and

operating such solutions is complex. Serverless360 solves these challenges with a rich set of

sophisticated tools.

Start your 15 days free trial

Visit Serverless360 for more information.

Copyright Kovai Ltd, UK. All Rights Reserved

TRY IT FOR FREE

https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.serverless360.com/signup?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard
https://www.serverless360.com/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

contact@serverless360.com | Copyright © Kovai Limited. All Rights Reserved

https://www.serverless360.com/?utm_campaign=whitepaper-building-integrations-solutions-with-the-latest-logic-app-version
mailto:contact@serverless360.com
https://www.kovai.co/?utm_campaign=whitepaper-building-integration-solutions-with-microsoft-azure-logic-apps-standard

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

